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A mechanism for relaxing the nuclear magnetic moments, in which a pair of spin-polarized BCS quasipar-
ticles is emitted or absorbed, and which dominates at low temperature, is identified in type-II d-wave super-
conductors in an external magnetic field above Hc1. The results of the theory are compared with the NMR
experiments on YBCO in high magnetic fields and found to agree without invoking antiferromagnetic order in
the vortex core.

DOI: 10.1103/PhysRevB.81.104515 PACS number�s�: 74.25.N�, 74.25.Ha, 74.72.�h

I. INTRODUCTION

Being a bulk real-space probe, with information about the
precession and relaxation rates of nuclear spins at different
sites inside the sample, NMR has served as one of the key
experimental tools1 in the study of the electronic properties
of high-temperature cuprate superconductors �HTS�. By and
large, the 17O NMR data2–5 on HTS, in moderate to large
magnetic fields, has been interpreted as evidence for antifer-
romagnetic �AF� order in the vortex core.5–7 This interpreta-
tion was based on the dependence of the spin-lattice relax-
ation rate, 1 /T1, for the Cu nuclei in the normal state; the rate
remains constant with temperature,8 as opposed to being lin-
ear in T, as predicted by the Korringa law.9

We reexamine this interpretation using analytical and nu-
merical solutions of the Bogoliubov-de Gennes equations
and find that the present data can be understood quantita-
tively without invoking AF ordering. In particular, the low-
temperature upturn in 1 / �T1T� near the vortex core, but not
away from it, can be understood to be caused by a combina-
tion of two effects: �1� the increase of the quasiparticle �qp�
wave function near the core and �2� the shift of the minimum
of the qp band with spin along the applied magnetic field
�spin up� to negative energies due to Zeeman coupling. As a
result, a new electronic channel opens up for relaxing the
nuclear spin whereby a pair of spin-up quasiparticles is emit-
ted or absorbed. This is in contrast to the standard “spin-flip”
channel, in which a spin-up�down� qp is destroyed and a spin
down�up� qp is created. At temperatures below the Zeeman
scale the latter channel freezes out since the number of qp’s
with spin anti-aligned with the B-field becomes thermally
activated, and the former channel dominates. In addition, we
find that the broad NMR line shape appears even in the ex-
treme type-II limit, where the diamagnetic response of the
H-field induced supercurrents can be neglected. The broad-
ening here is found to be due to the spatially nonuniform
paramagnetic response of d-wave superconductors in the
vortex state.

Several other theoretical investigations of NMR in the
mixed state of the cuprate superconductors have been carried
out. One of the earliest treatments was that of Takigawa et
al.10 using a self-consistent method of solution of the
Bogoliubov-de Gennes equations due to Wang and
MacDonald.11 They found that 1 /T1 is linear in temperature
near the vortex cores at low temperatures and exhibits a

small Hebel-Slichter-like peak near the superconducting
transition temperature. At low temperature, the rates near
the core are also found to be larger than the rates away
from it, which approach the usual T3 dependence. NMR
in the d-wave mixed state was also studied using a semi-
classical approach,12 and using a linearized form of the
Bogoliubov-de Gennes equations.13 The results of the linear-
ized model give faster rates near the vortex cores than away
from them. They found that 1 / �T1T� near the core increases
slowly with temperature up to 30 K, and remains almost
constant over the same temperature range away from the
core. Importantly, these works focused on the quasiparticle
spin-flip channel, but, as mentioned above and as we show in
more detail below, the Zeeman coupling of the quasiparti-
cles, which cannot be ignored at large magnetic fields, intro-
duces an additional channel for spin-lattice relaxation which
is found to dominate at low temperature.

Our paper is organized as follows. In Sec. II, we state the
full Hamiltonian of our system and review the basic formulas
for the Knight shift and 1 /T1T. In Sec. III, we introduce our
model for the electronic contribution to the Hamiltonian, de-
rive the formulas for the Knight shift and 1 /T1T for this
model, and present the results of our calculations. In Sec. IV,
we discuss the possible influence of antiferromagnetic corre-
lations. Finally, we present our conclusions in Sec. V.

II. KNIGHT SHIFT AND SPIN-LATTICE RELAXATION
RATE

A. Basic Model

We will start by stating the Hamiltonian describing our
system.

Ĥ = Ĥe + Ĥn + Ĥhf , �1�

where Ĥe is the Hamiltonian of the electrons on their own,

Ĥn is that of the nuclei on their own, and Ĥhf is the hyperfine
interaction between the electrons and nuclei. The nuclear
contribution is just the total energy of the nuclear spins in an
applied magnetic field,
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Ĥn = − �n��
r

Î�r� · B , �2�

where �n is the gyromagnetic ratio of the nuclei and Î�r� is
the spin of the nucleus at r. There are other terms present,
such as quadrupole terms and interactions among the
nuclei.1,9,14 However, in large magnetic fields, which we will
be considering here, these terms are small compared to the
above magnetic term. The quadrupole terms lead to uneven
splitting of the nuclear energies, and the interactions may
lead to a slight broadening of the resonances of the nuclei.9,14

We use the model of Shastry, Mila, and Rice15,16 for the
hyperfine interaction,

Ĥhf = − �e�n�2�
rr�

A�r − r��Î�r� · Ŝ�r�� , �3�

where �e and �n are the gyromagnetic ratios of an electron

and a nucleus, respectively, Î and Ŝ are their respective spin
angular momenta, and the coefficients A�r� are the form fac-
tors for the hyperfine interaction.15,16 Note that we are taking
�e to have a negative value. The electronic contribution will
be the subject of the next section.

To compare our results to experiments,5,14 we will be in-
terested in the relaxation rates and the Knight shifts for the
in-plane 17O atoms in YBCO. For these atoms, we include
the contributions to the form factor A�r� from both nearest-
�n.n.� and next-nearest-neighbor �n.n.n.� copper atoms:
�e�n�2A�r−r�� is equal to 2.317�10−7 eV for the n.n. Cu
atoms, and 5.794�10−8 eV for the n.n.n. Cu atoms.17,18 As
discussed by Zha, Barzykin, and Pines,18 this form factor
suppresses contributions from the AF correlations to the
spin-lattice relaxation rate at O sites in the normal state. We
expect this suppression to persist in the mixed state, as we
will argue in Sec. IV.

B. Knight Shift

The Knight shift is a change �usually an increase� in the
nuclear resonance frequency induced by the surrounding
electrons.9 This can be attributed to an effective magnetic
field produced by the electrons through the hyperfine cou-
pling to the nucleus. Using first-order time-independent per-
turbation theory on this term and taking the thermal average
of the result, we get

Ĥhf ,ef f = − �n��
r

Î�r� · �Bef f�r� , �4�

where

�Bef f�r� = �e��
r�

A�r − r���Ŝ�r��� �5�

is the effective magnetic field experienced by the nuclei and
produced by the electrons; � . � denotes a thermal average.
Because the nuclear resonance frequency, �=�nB, is propor-
tional to the applied magnetic field, this means that the reso-
nance frequency is shifted by an amount �n�Bef f.

We will use this formula in the next section to determine
the Knight shift in a d-wave superconductor in a magnetic

field. Note that the above formulas, in general, allow for a
position dependence of the effective magnetic field; the
Knight shift in our system will, in fact, be position depen-
dent.

C. Spin-Lattice Relaxation Rate

As is well known,9 the spin-lattice relaxation rate at r is
given by

1

T1�r�
=

1

2

�
mn

Wmn�r��Em − En�2

�
n

En
2

, �6�

where En is the energy of the nucleus at r in a state n, and it
is assumed that �nEn=0. We will also assume that the ener-
gies are equally spaced, i.e., En−En−1=�E. This is not ex-
actly true, due to, for example, the quadrupole term, but,
because we are working in high magnetic fields, such contri-
butions beyond the magnetic energy are small, and we may
treat the eigenstates of this term alone as almost exact, which
is one of the assumptions made in the use of this formula.9

The function Wmn�r� entering Eq. �6� is the transition rate
for the z component �along the H-field� of the nuclear spin at
site r to go from m� to n�. We can find these rates using
Fermi’s Golden Rule,

Wmn�r� =
2�

� ��
QQ�

��mQ��V̂�r��nQ��2��EmQ� − EnQ�� ,

�7�

where V�r� is the hyperfine interaction in the form,

V�r� = − �e�n�2�
r�

A�r − r��Î�r� · Ŝ�r�� . �8�

We will employ these formulas to determine the spin-lattice
relaxation rate in a d-wave superconductor in a magnetic
field in the next section. Again, note that our formulas, in
general, allow for a position dependence of the relaxation
rate and the Knight shift.

III. NMR IN A d-WAVE SUPERCONDUCTOR

A. Bogoliubov-de Gennes (BdG) Equation

We now discuss the electronic contribution to the Hamil-
tonian. Our starting point will be the Hamiltonian for elec-
trons on a square tight-binding lattice in a magnetic field
with a singlet pairing term

Ĥ = �
�rr��

	trr�ĉr�
† ĉr�� + 	rr��ĉr↑

† ĉr�↓
† − ĉr↓

† ĉr�↑
† � + h.c.


− �
r

ĉr

† ���
� + h�
�

z �ĉr� �9�

where the tight-binding hopping constants trr� are

trr�=−te−iArr�, Arr�= e
�c�r

r�A�r� ·dr; A�r� is the vector poten-
tial associated with the �constant� applied magnetic field B,
1
2g�B is the spin magnetic moment of an electron, and � is
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the chemical potential. For the symmetric gauge
A�r�= 1

2B�r, the values of Arr� relevant for a square lat-
tice are Ar,r+x̂=−�y /0 and Ar,r+ŷ=�x /0, where
 is the magnetic flux through a plaquette, and 0=hc /e
is the flux quantum. The pairing field 	rr� is assumed
to have a constant magnitude and 	rr�=��	0ei�rr�,
where ��x̂=−��ŷ=1, otherwise ��=0. The phase factor
ei�rr�= 	ei��r�+ei��r��
 / �ei��r�+ei��r���, where ��r� satisfies the
equations, ����=2�ẑ�i��r−ri�, where the ri are the po-
sitions of the vortex cores, and �2�=0. These conditions
determine ��r� up to terms of the form �0+v0 ·r; these con-
stants are fixed by requiring zero overall current. The vortex
cores form a periodic Abrikosov lattice, such that each primi-
tive cell �magnetic unit cell� of this lattice carries exactly one
quantum of magnetic flux hc /e. Note that our assumption of
a constant magnetic field effectively corresponds to an infi-
nite penetration depth. We choose to assume a pairing field
of constant amplitude, placing all of the vortex physics into
the phase. We do so because we believe that assuming a
constant amplitude, as opposed to calculating it self-
consistently, will not greatly affect our results. Lacking a
microscopic model for cuprate superconductors, it is uncer-
tain whether a self-consistent calculation will result in much
improvement of our results. Finally, for notational conve-
nience we denote the Zeeman factor by h= 1

2g�BB.
Our method of solution for this problem follows Refs.

19–21. To diagonalize this Hamiltonian, we introduce the
singular gauge-Bogoliubov-de Gennes transformation20,22

�ĉ↑�r�
ĉ↓

†�r�  = �
kn
�ei��r�/2ukn�r� − ei��r�/2vkn

� �r�
ei��r�/2vkn�r� ei��r�/2ukn

� �r�
��̂kn↑

�̂kn↓
†  ,

�10�

which allows us to rewrite the Hamiltonian in terms of the
quasiparticles in the Bloch basis corresponding to the mag-
netic unit cell �x��y containing a pair of vortices. By
Bloch’s theorem the Nambu spinors, which are eigenfunc-
tions of the Bogoliubov-de Gennes equation,19,20,22 can be
written as 	ukn�r� ,vkn�r�
T=eik·r	Ukn�r� ,Vkn�r�
T, where
Ukn�r� and Vkn�r� are periodic in �x��y, n is the band index
and the crystal momentum k� �− �

�x
, �

�x

� �− �

�y
, �

�y

.

There is one issue introduced by this transformation that
is worth addressing in detail. As we wind around a vortex,
��r� increases by 2�. This means that the phase factors in
the above gauge transformation only increase by �, meaning
that the phase factors, at this point, are not uniquely deter-
mined. We must therefore introduce branch cuts into the
Hamiltonian and choose the values of the phase factors care-
fully. The procedure we use in choosing the values of these
factors is that used in Ref. 20. We first choose a branch cut,
which can be any continuous curve connecting the two vor-
tices inside the magnetic unit cell. We then choose one point
r0 on the atomic lattice, and let the phase factor for that site
be b0=ei��r0�/2. We now move to a neighboring site r such
that we do not need to cross the branch cut to reach it. Let b
be the phase factor for this site. The solution to b2=ei��r� that
we choose is the one that gives the lower value of �b−b0�. We

do this for all sites, thus generating the appropriate values for
ei��r�/2. This process is illustrated in Fig. 1.

The coefficients Ukn�r� and Vkn�r� satisfy the

Bogoliubov-de Gennes equation, e−ik·rĤ0eik·rkn�r�
=Eknkn�r�, where kn�r�= 	Ukn�r� ,Vkn�r�
T,

Ĥ0=�z�Êr−��+�x	̂r−h, the operators Êr and 	̂r are

Êr = − t �
�=�x̂,�ŷ

z2,r,r+�ei�zVr,r+�T̂�,

	̂r = 	0 �
�=�x̂,�ŷ

z2,r,r+���T̂�,

and T̂� performs a translation along the vector �.
We now wish to make a comment on the energies

of the quasiparticles in our system. Let Ĥ0,NZ

=�z�Êr−��+�x	̂r—that is, Ĥ0,NZ is Ĥ0 without the Zeeman

term. Note that diagonalizing Ĥ0,NZ is the same as diagonal-

izing Ĥ0 because the two differ only by a term proportional
to the identity matrix. In fact, if we let Ekn be the eigenvalues

of Ĥ0,NZ, then the eigenvalues of Ĥ0 are just E=Ekn−h. The

matrix Ĥ0,NZ, as we implied, would replace Ĥ0 if we ne-
glected the Zeeman splitting. Since we can simultaneously

diagonalize Ĥ0 and Ĥ0,NZ, we see that the same eigenvectors
would diagonalize the difference between the two Hamilto-
nians that result in these matrices, which is a term propor-
tional to the z component of the spin. This is because the z
component of the spin is a good quantum number, and can be

FIG. 1. �Color online� Illustration of the process by which we
choose the values of ei��r�/2 for each site for a 6�6 magnetic unit
cell. The large circles represent the sites, and the small circles the
bonds connecting them. The dots are the locations of the vortex
cores, and the dashed line is the branch cut. The black arrows rep-
resent the site phase factors, ei��r�, while the large gray �orange�
arrows represent the value of ei��r�/2 chosen by the process outlined
in the text. The bond phase variable, ei�rr�, is represented by the
small light gray arrow, and ei��r�/2ei��r��/2 is represented by the
small dark gray �red� arrow.
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used to label the elementary excitations. We note that

	�i�y�Ĥ0,NZ�− i�y�
� = �yĤ0,NZ
� �y

= − �z�Êr − �� − �x	̂r

= − Ĥ0,NZ. �11�

This shows that, if we multiply an eigenvector of Ĥ0,NZ by
i�y and then take the complex conjugate of the result, then
we obtain another eigenvector of the same matrix, but with
the negative of the eigenvalue of the original vector. We have
thus shown that the spinor i�y�kn�r� is an eigenvector of

Ĥ0,NZ with eigenvalue −Ekn, and therefore also an eigenvec-

tor of Ĥ0 with eigenvalue −Ekn−h.
The fact that we can generate the negative-energy states

from the positive-energy ones implies that we may take the
sum in Eq. �10� to be over states that give positive eigenval-

ues of Ĥ0,NZ. We could also choose, for example, the states
with negative eigenvalues. In fact, we may choose any one
of these two possibilities for each term. In this paper, we
conform to widely used convention and use the positive en-
ergy eigenvalues.

The diagonalized Hamiltonian takes on the form

Ĥ = �
kn

�Ekn↑�̂kn↑
† �̂kn↑ + Ekn↓�̂kn↓

† �̂kn↓� − E�0�, �12�

where E�0�=N�+�knEkn and the qp eigenenergies are
Ekn�=Ekn−�h. The density of states �without Zeeman�
N���=�n=1

�x�y� d2k
�BZ

���−Ekn� for realistic values of the physical
parameters is plotted in Fig. 2. As shown below, these ener-
gies and wave functions enter into the calculation of the
NMR line shape and 1 /T1.

In our calculations, we worked with both 20�34 and
26�26 unit cells, both of which correspond roughly to an
applied field of 42 T, as well as with a 36�62 unit cell,
which corresponds to an applied field of about 13 T. These
calculations were done for optimally doped YBCO, for
which t=153 meV, 	0= 1

14 t, and �=0.297t. Because we
wish to calculate thermodynamic properties of the system at
low temperatures �temperatures up to 30 K�, we only needed

to find some of the lower energy bands. Thus, we used the
Arnoldi method to find the energies and wave functions, and
we discretized the reciprocal lattice into a 50�50 grid.

Let us now make some comments on the energy spectrum
and the wave functions. First, we note that, while the ener-
gies Ekn are all positive, so that no quasiparticles would be
present in the ground state of our system if there is no mag-
netic field, it is possible, under certain circumstances, for
some of the energies Ekn↑ to be negative. To be exact, Ekn for
most values of the chemical potential could exhibit a gap. If
Ekn is smaller than the Zeeman splitting, then some of the
energies will become negative.20 This means that, in the
ground state, there will be some quasiparticles present, all
with their magnetic moments parallel to the field. This means
that the “gas” of quasiparticles is spin-polarized in the
ground state, resulting in a nonzero Knight shift, even at zero
temperature.

B. Knight Shift and Line Shape Broadening

To find the Knight shift for a superconductor in a mag-
netic field, we simply substitute the Bogoliubov transforma-
tion �10� into the spin operator. Here, we only consider the
effect of the spin component along the z axis,

Ŝz�r� = ĉ↑
†�r�ĉ↑�r� − ĉ↓

†�r�ĉ↓�r� .

Upon performing the Bogoliubov transformation and taking
the thermal average, we find that the effective magnetic field
shift is

�Bef f�r� = �e��
r�

�
kn

A�r − r��nkn�r��	f�Ekn↓� − f�Ekn↑�
 ,

�13�

where f�E� is the usual Fermi-Dirac distribution,

f�E� =
1

eE/kBT + 1
, �14�

and nkn�r�= �ukn�r��2+ �vkn�r��2.
Note that, even in the extreme type-II limit �i.e., taking

the penetration depth to infinity�, in the vortex state the local
electron density is different at different locations within a
magnetic unit cell. Taking into account the Zeeman shift, this
translates to spatially varying spin density and by the above
two equations to the spatially varying Knight shift. This
means that even nuclei of the same species will have differ-
ent resonance frequencies depending on their location in the
magnetic unit cell. This results in a broadening of the NMR
line shape �Figs. 3 and 4�.

We found the effective magnetic field due to the electrons,
which is proportional to the Knight shift, for the 20�34 and
36�62 lattices, and we have plotted the spatial profiles for
this case in Figs. 3 and 4. As expected, the largest Knight
shifts occur near the vortices because the local electron den-
sity is largest in the same area. In reality, the plots shown are
for those O atoms on bonds parallel to the “short” axis of the
magnetic unit cell �in this case, the x axis�; the plots for the
atoms on bonds along the y axis are similar in appearance.

0.02 0.04 0.06 0.08 0.1 0.12 0.14
E t

0.1

0.2

0.3

0.4

�� �lx 0 � �lx
�
�
������
ly

0

�
������
ly

DOS arb. units]

FIG. 2. �Color online� Density of qp states for B=0 �gray line;
green online� and B�42 T ��x=20a, �y =34a; �black line� for 
D

=14 and �=0.3t. The vertical line shows the corresponding Zeeman
shift h= 1

2g�BB. The inset shows the spin-polarized qp Fermi sur-
faces which come from the lowest �gray; red online� and the next to
lowest �black� magnetic bands.
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We now determine the line shape that would result from
this effective magnetic field. Denoting this line shape by
f�B0�, the line shape is given by

f�B0� =� �	B0 − B�r�
d3r . �15�

This formula assumes that the response of a single nucleus as
a function of the frequency is a delta function centered at the
resonance frequency. This, however, is not true in reality; in

fact, the response has a finite width in the frequency. For this
reason, we must convolute this line shape with a broadening
function representing the response of a single nucleus to ob-
tain the true line shape. The broadening function we use in
our calculations is a Gaussian of width 50 G. This broaden-
ing is experimentally motivated; the width is approximately
that of the −1 /2↔−3 /2 transition found by Mitrović.14

Again, we calculate this line shape for 20�34 and 36�62
lattices; the results are plotted in Figs. 3 and 4.

C. Nuclear Spin-Lattice Relaxation Rate

To find the nuclear spin-lattice relaxation rate, 1 /T1, we
first make a simplification to the hyperfine interaction �8�.
Using the identity, Î+Ŝ−+ Î−Ŝ+=2�ÎxŜx+ ÎyŜy�, we may write it
as

V̂�r� = − �e�n�2�
R

C�r − R�	Î+�r�Ŝ−�R� + Î−�r�Ŝ+�R�
 ,

�16�

where, for convenience, we have defined C= 1
2A. Note that

we dropped the ÎzŜz term; this term will only contribute when
m=n, and these transition rates, as we will see, do not con-
tribute to the relaxation rate. This form will be more conve-

nient to work with because the Ŝ� operators take on simple

forms, namely Ŝ+= ĉ↑
†ĉ↓ and Ŝ−= ĉ↓

†ĉ↑.
We now make an approximation. We assume that the

nuclear Zeeman energy is much smaller than the electronic
Zeeman energy, and thus we neglect that contribution to the
total energy of the system. This is a good approximation if
Em−En�kBT. We then obtain

Wmn�r� =
2�

� ��
QQ�

��mQ��V̂�r��nQ��2��EQ� − EQ�� .

�17�

Upon expanding out the expression, ��mQ��V̂�r��nQ��2, oc-
curring in Eq. �7�, we obtain four terms; only two of these

will be nonzero, namely the term involving �m�Î+�n��n�Î−�m�
and the term of the same form, but with m and n inter-
changed. Substituting this into Eq. �7�, we get

Wmn�r� =
2�

�
�e

2�n
2�4��

QQ�
�
RR�

C�r − R�C�r − R����m�Î+�r��n�

��n�Î−�r��m��Q��Ŝ−�R��Q��Q�Ŝ+�R���Q��

+ �m ↔ n,Q� ↔ Q����EQ� − EQ�� . �18�

At this point, we express the spin raising and lowering op-
erators in terms of the quasiparticle operators using the
above definitions and Eq. �10�, and then introduce these op-
erators into the above expression. Upon doing so, we obtain
16 terms. However, ten of these will be zero because they
will involve expressions such as �Q���̂�̂�Q��Q��̂�̂†�Q�, and it
is impossible to “match” the operators in the first factor to
those in the second—that is, we cannot pair, for example, an
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FIG. 3. �Color online� �a� Effective magnetic field shift �Bef f at
T=0 as seen by the 17O nuclear spins for �approximately� triangular
vortex lattice corresponding to the external field B=42 T. The
Dirac anisotropy 
D= t /	0=14 and �=0.3t corresponding to
x�15%. �b� Spatial variation of �Bef f, whose density is shown in
gray �red�, leads to broadening of the NMR line shape �black� 	ad-
ditionally broadened by a Gaussian with �=50 gauss �Ref. 14�
. �c�
Spin-lattice relaxation rate 1 / �T1T� vs T for different �Bef f. The
data points and error bars are the experimental data �Ref. 5�.

0 5 10 15 20 25 30 35
x�a

0

10

20

30

40

50

60

y�
a

0.004

0.019

0.02 0.04 0.06 0.08 0.1
�B�T�

25

50

75

100

125

150

175
INMR�arb. units�

5 7.5 10 12.5 15 17.5 20
T�K�

0.02

0.04

0.06

0.08

1�T1T�s�1 K�1�

(a)

T

T

(b)

�B = 0.0285 T
�B = 0.0135 T

(c)

FIG. 4. �Color online� �a� Effective magnetic field shift �Bef f at
T=0 as seen by the 17O nuclear spins for �approximately� triangular
vortex lattice corresponding to the external field B=13 T. All other
parameters are the same as before. �b� Spatial variation of �Bef f,
whose density is shown in gray �red�, leads to broadening of the
NMR line shape �black� 	additionally broadened by a Gaussian with
�=50 gauss �Ref. 14�
. �c� Spin-lattice relaxation rate 1 / �T1T� vs T
for different �Bef f. Again, the data points and error bars are the
experimental data �Ref. 5�.
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annihilation operator in the first factor with its corresponding
creation operator in the second. Of the six terms that remain,
one of them, which has the form �Q���̂↓�̂↓�Q��Q��̂↓

†�̂↓
†�Q��,

will also be zero because the process of creating or destroy-
ing two spin-down quasiparticles violates conservation of en-
ergy due to all spin-down quasiparticles having positive en-
ergy. We note, however, that the corresponding process for
spin-up quasiparticles, �Q���̂↑�̂↑�Q��Q��̂↑

†�̂↑
†�Q��, does not

violate conservation of energy because some of the spin-up
quasiparticles have negative energies. This means that, in
addition to the usual spin-flip �SF� scattering process, there is
also a quasiparticle creation/annihilation process �PCA�
through which the nuclear spins can relax.

We go into detail on how we find the different terms oc-
curring in our final result in the Appendix; we only quote the
final result here. Performing the appropriate sums and ther-
mal averages we eventually obtain

Wmn�r� = 2��e
2�n

2�3	I+
mn�r�I−

nm�r� + c.c.
f�r,T� ,

where I+
mn�r�= �m�I+�r��n�, and similarly for I−

mn�r�. This in
turn gives the main result of this paper,

1

T1�r�
= 4��e

2�n
2�3f�r,T� , �19�

where the function

f�r,T� = �
nn�
� d2k

�BZ

d2k�

�BZ � �Gknk�n�
SF �r��2��Ekn − Ek�n� + 2h�

4 cosh2�Ekn + h

2kBT
�

+
�Gknk�n�

PCA �r��2��Ekn + Ek�n� − 2h�

8 cosh2�Ekn − h

2kBT
� � . �20�

The above integrals are over the 1st Brillouin zone whose
area is �BZ=4�2 / ��x�y�. The qp coherence factors enter via
the functions

Gknk�n�
SF �r� = �

R
Cr−R	Ukn

� �R�Uk�n��R�

+ Vkn
� �R�Vk�n��R�
ei�k�−k�·R

and

Gknk�n�
PCA �r� = �

R
Cr−R	Vkn�R�Uk�n��R�

− Ukn�R�Vk�n��R�
ei�k�+k�·R.

Note that this differs from the formulas presented in
Refs. 10 and 13, most importantly by the presence of
the second term. The eigenenergies Enk�0 are the solu-
tions of the Bogoliubov-de Gennes equation without the
Zeeman coupling, and the corresponding periodic wave
functions are normalized within the magnetic unit cell:
�r��x�y

��Ukn�2�r�+ �Vkn�2�r��=1. From Eqs. �19� and �20� it is
readily seen that, regardless of the minimal value of Enk, at
temperatures T�h= 1

2g�BB, the qp SF process is activated
and thus vanishingly small. At B=42 T this corresponds to a

temperature scale of �28 K, which in turn means that the
low T��5 K� upturn in 1 / �T1T� observed experimentally3,5

cannot be due to this process. It is the second term �PCA�
which dominates at low temperatures and corresponds to the
observed effect.

To illustrate the basic physics behind the effect, we will
temporarily ignore the orbital effects and analyze the conse-
quences of the Zeeman coupling alone.23 Physically, this
would correspond to a thin film in a parallel �in-plane� B
field. The eigenenergies in Eq. �20� are then easily found to
be Ek=��k

2 +	k
2, where �k=−2t�cos kxa+cos kya�−� and

	k=2	0�cos kxa−cos kya�. At the same time the wave func-

tions are simply uk= 1
�2
�1+

�k

Ek
and vk=

sgn 	k
�2

�1−
�k

Ek
. Assum-

ing for simplicity Cr=c0�r,0 and particle-hole symmetry, this
gives for the Zeeman-only case

1

T1
= 2��e

2�n
2�3c0

2

���0

�

dE
N�E�N�E + 2h�

4 cosh2�E + h

2T
� + �

0

2h

dE
N�E�N�2h − E�

8 cosh2�E − h

2T
�� .

�21�

For h, T�	0 we need only the low-energy qp density of
states, which is N�E�=2E / ��vFv	�, where vF

=2�2at�1− �2

16t2 and v	=vF	0 / t. In this limiting case, the
integral can be found in a closed form and

1

T1
=

4

�

�e
2�n

2�3c0
2

vF
2v	

2 T3F� h

T
� , �22�

where F�x�=�2+8x ln�1+ex�−3x2+8Li2�−ex� and Lis�z� is
the polylogarithm. For x�1, F�x�= �2

3 −x2, and in this limit
we recover the standard d wave 1 / �T1T��T2. On the other
hand, for x�1, F�x�=x2− �2

3 . In this limit 1 / �T1T� increases
as T is lowered and approaches a constant at T=0. The mini-
mum in 1 / �T1T� then results from the competition between
the spin-flip process, which dominates at T�h and the qp
pair creation/annihilation process which dominates at T�h.

Putting back the coupling of the B field to the orbital
motion of the electrons, we find that the effect described
above acquires an interesting spatial content. The dispersing
states which are pulled below zero energy by the Zeeman
coupling are strongly concentrated around the cores. Due to
the increase of the low-energy wave functions near the cores,
the low-temperature relaxation rate of the nuclear spin is the
largest in the vicinity of the cores and decreases with in-
creasing T. This temperature dependence is in turn due to the
pair creation/annihilation processes, i.e., the second term in
Eq. �20�.

To generate a dependence of the spin-lattice relaxation
rate on the internal magnetic field, we associated the rate at a
given point and a given temperature with the value of the
effective magnetic field shift at that point and temperature.
We then fit this set of points to a power law to generate a
continuous dependence; at all magnetic field shifts of inter-
est, the points are close enough together that they approxi-
mately form a continuum. We do this for all temperatures up
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to 30 K for B=42 T and up to 20 K for B=13 T; the results
of this procedure are shown in Figs. 3 and 4. We also high-
light the curves that give the best fit to the data near the
vortex core and away from the core.3,5

IV. CONTRIBUTION OF ANTIFERROMAGNETC
CORRELATIONS TO THE SPIN-LATTICE

RELAXATION RATE

We now address the issue of how much of an effect anti-
ferromagnetic correlations will have on the spin-lattice relax-
ation rate of 17O in the vortex state, assuming that the vortex
cores represent normal-state regions. As was mentioned be-
fore, it is known that the form factor filters out such corre-
lations in the normal state.18 Within the simple model pre-
sented here, we find that this filtering is still active in the
vortex state. To investigate the effect of vortices, we used a
modification of the phenomenological model set forth,
among others, by Zha, Barzykin, and Pines.18 We start with
their expression for the “antiferromagnetic” part of the sus-
ceptibility,

�AF�k,�� =
1

4�
i


�2�B

1 + �q − Qi�2 + i�/�SC
. �23�

Here, 
 is a scale factor, � is the antiferromagnetic correla-
tion length, �B is the Bohr magneton, the Qi are the locations
of the peaks in the susceptibility found from neutron scatter-
ing experiments, �SC is the characteristic frequency of spin
fluctuations, and q ranges over the entire first Brillouin
zone.18 We obtained the model we used by rewriting the
above susceptibility as a function of position, separating the
position dependence into a dependence on the position of a
“magnetic unit cell” and a dependence on position within the
cell, and Fourier transforming the result with respect to the
magnetic unit cell position. The result is

�AF�q,�r − �r�,�� =
1

4

NM

N
�
G

�
i


�2�Bei�q+G�·��r−�r��

1 + �q + G − Qi�2 + i�/�SC
,

�24�

where q now ranges over the first magnetic Brillouin zone,
G is the set of all vectors such that eiG·R=1 for all R in the
magnetic lattice and such that q+G is within the first atomic
Brillouin zone, NM is the number of magnetic unit cells, and
N is the number of sites in the atomic lattice. We note that,
assuming an Lx�Ly magnetic unit cell, the number of atomic
sites is just LxLyNM, so we may simply write

�AF�q,�r − �r�,�� =
1

4

1

LxLy
�
G

�
i

�

�2�Bei�q+G�·��r−�r��

1 + �q + G − Qi�2 + i�/�SC
.

�25�

So far, we have not introduced a new model; we only re-
wrote the original in a more complicated form. We will now
modify this model to introduce vortex effects. For simplicity,

we will assume only one vortex per unit cell. We model these
effects by simply introducing step functions into the suscep-
tibility to restrict the antiferromagnetic correlations to within
a distance equal to the superconducting coherence length �SC
from the center of the vortex. The result is

�AF�q,�r,�r�,�� =
1

4

1

LxLy
�
G

�
i


�2�Bei�q+G�·��r−�r��

1 + �q + G − Qi�2 + i�/�SC

� ���SC − �r����SC − �r�� . �26�

We now turn our attention to finding the spin-lattice relax-
ation rate from this susceptibility. It can be shown that, if we
assume that this relaxation is due to the hyperfine interaction
�8�, then the spin-lattice relaxation rate will be

1

T1�r�
= �e

2�n
2�3kBT�

r�r�

A�r − r��A�r − r��

� lim
�→0

Di �+−�r�,r�,��
��

, �27�

where Di f�. . . ,�� is a “discontinuity” operator, defined as

Di f�. . . ,�� =
f�. . . ,� + i0+� − f�. . . ,� − i0−�

2i
. �28�

We may rewrite the above formula for a susceptibility of the
form we are working with. By introducing the appropriate
Fourier transforms, we eventually arrive at the desired result,

1

T1�r�
= �e

2�n
2�3kBT

1

Lx
2Ly

2NM

� �
�r��r�

�
G1G2

�
k

A�k + G1�A��k + G2�ei�G1−G2�·r

�e−i�k+G1�·�r�ei�k+G2�·�r� lim
�→0

Di �+−�k,�r�,�r�,��
��

,

�29�

where �r� and �r� are summed over the entire unit cell, k is
summed over the entire magnetic Brillouin zone, and G1 and
G2 are summed over the same set of vectors as G in Eq. �25�.

The rest of our work was done numerically. We used the
experimentally-determined parameters given by Barzykin
and Pines for the susceptibility for YBa2Cu3O6.63.

24 We first
performed a numerical calculation of the rates for r=0 for
both copper and oxygen without vortices. The form factors
we used are

ACu�k� = A + 2B�cos kxa + cos kya� , �30�

AO,x�k� = 2 cos
1

2
kxa�C1 + 2C2 cos kya� , �31�

AO,y�k� = 2 cos
1

2
kya�C1 + 2C2 cos kxa� , �32�

where a is the atomic lattice spacing and the parameters, A,
B, C1, and C2 are those given by Zha, Barzykin, and Pines.18

Because of the fact that the momentum-space points �kx ,ky�
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and �ky ,kx� are both present in the sums in our formulas, Eqs.
�31� and �32� should give the same result. We did this using
both Eqs. �23� and �25� to check our formulas. The tempera-
ture range we examined was 70 K�T�300 K. We found
that the contributions to the rates for both Cu and O de-
creased with increasing temperature, and that the rates for O
were several orders of magnitude smaller than for Cu; such
suppression of the rate for O compared to Cu has been re-
ported before by Mila and Rice.16 We then repeated this cal-
culation, this time including vortices. We set the supercon-
ducting coherence length �SC=2a. We found that the
temperature dependence of both rates was qualitatively the
same as before, but that the rates were actually enhanced; the
copper rates by an entire order of magnitude and the oxygen
rates by a factor of about 4. We believe that this is due to the
fact that, by imposing the distance cutoff, we removed con-
tributions to the relaxation rate that would have reduced the
rate. Based on this simplified model, we therefore expect
that, not only is the filtering effect still present in the mixed
state, but it is, in fact, enhanced.

It goes without saying then that this filtering effect would
therefore make oxygen NMR more sensitive to the PCA pro-
cesses than copper NMR. This is because the effect of anti-
ferromagnetic correlations is much less for oxygen than for
copper, meaning that the PCA processes will dominate in
oxygen.

V. CONCLUSIONS

In this work, we argued that it is possible to explain the
broadening of the line shape and the upturn in the spin-lattice
relaxation rate with decreasing temperature observed
experimentally3,5 without introducing antiferromagnetic cor-
relations. The line shape broadening can be explained, at
least in part, by noting that the Knight shift varies with po-
sition in the lattice in the vortex state. This position depen-
dence leads to each nucleus having a different resonance
frequency, and therefore to a broadened line shape. The up-
turn in the relaxation rate can be explained as due to a second
relaxation process, namely creation and annihilation of pairs
of spin-up quasiparticles, that appears when a magnetic field
is applied, and this process dominates at low temperatures.
We do not wish to claim that AF correlations do not exist in
YBCO, only that certain features of the NMR data once at-
tributed to such correlations can be explained without them;
in fact, there is other evidence for the existence of such cor-
relations, namely neutron scattering data.25 As we argued in
Sec. IV, even in the presence of AF correlations, the spin-
lattice relaxation rates for O will not be greatly affected by
them due to the form factor.

Based on the above arguments we expect that, once
the vortex lattice melts and the system enters a vortex
liquid phase, the NMR lines sharpen due to motional
narrowing.26,27 At the same time, we expect that the spin-
lattice relaxation rate, 1 /T1, is determined by the faster rates
and that the low T upturn persists in the vortex liquid.

This picture and the density of states shown in Fig. 2 also
predict that if an experiment is performed in a clean thin film
with a well-ordered vortex lattice in which the perpendicular

component of the B field is kept fixed, while changing the
magnitude of the total B, quantumlike oscillations in 1 /T1,
due to the oscillations of the density of states in energy,
would be observed.

While our calculated line shapes have about the same
width as the experimental shape for the 42 T case, the shapes
for the 13 T case have different widths. One possible con-
tributing factor to this discrepancy is the fact that we ne-
glected the variation of the magnetic field and the pairing
amplitude over a unit cell. We expect the magnetic field to
vary more strongly in the 13 T case than in the 42 T case
because the vortices are further apart in the 13 T case. In
fact, in the 42 T case, the distance between the two vortices
in a unit cell is about 10% of the penetration depth, while, in
the 13 T case, this distance is about 23% of the penetration
depth. This variation will introduce further broadening,
which will be greater at 13 T than at 42 T, consistent with our
findings.

We also notice that the “tails” on our calculated curves are
different in length than those of the experimental curves. We
believe that this, once again, is due to the fact that we ne-
glected the variation of the pairing potential over a unit cell.
In reality, the order parameter should be lower in magnitude
near the vortex cores because these regions are where super-
conductivity is beginning to break down. This means that we
expect our calculated line shapes to be more accurate in the
lower internal field regions than in the high internal field
regions.

Finally, we note that the peak in our curve at 42 T is split
in two, as opposed to the single peak seen in the experimen-
tal data.3,5 This suggests that there is another broadening
mechanism at work besides that due to the finite width of the
normal-state line shape because such broadening can wash
out the “split” peak so that only a single peak appears. One
such possibility is the presence of impurities.

We are able to obtain good fits of our calculated tempera-
ture dependence of the spin-lattice relaxation rates to the
experimental data using the internal magnetic field as our
only fitting parameter. We note, however, that the values of
the internal magnetic fields giving us our best-fit curves on
the line shape do not quite match the experimental results. In
the experiment, the region away from the core was in the
vicinity of the peak in the line shape.5 However, the positions
of the corresponding theoretical curves do not quite fall on
the peak; rather, they are away from it. It is possible that this
discrepancy may be due, in part, to our approximations in
solving the Bogoliubov-de Gennes equation, and that more
realistic modeling of the vortex core is necessary to account
for this.
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APPENDIX: DETAILS OF DERIVATION OF SPIN-
LATTICE RELAXATION RATE

Here, we go into some more detail about how we found
the different terms in the spin-lattice relaxation rate. As we
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mentioned earlier, when we rewrite the spin raising and low-
ering operators in terms of the Bogoliubov quasiparticles, we
obtain 16 terms, though only six give nonzero contributions.
One term we find that contributes to the SF process, sup-
pressing factors of u and v that occur, is

�
QQ�

�
knk�n�

�
qmq�m�

�Q���̂kn↓
† �̂k�n�↑�Q��Q��̂qm↑

† �̂q�m�↓�Q��

���EQ� − EQ� . �A1�

We note that the only terms that will give nonzero contribu-
tions are those for which k=q�, k�=q, n=m�, and n�=m. We
may then write

�
QQ�

�
knk�n�

�Q���̂kn↓
† �̂k�n�↑�Q��Q��̂k�n�↑

† �̂kn↓�Q��

���EQ� − EQ� . �A2�

We now note that the only nonzero matrix elements will be
those in which the state Q� is obtained from the state Q by
scattering a particle from the state with crystal wave vector
k�, band index n�, and spin up into the state with wave
vector k, band index n, and spin down. This means that the
energy difference between the two states is just
EQ�−EQ=Ekn↓−Ek�n�↑=Ekn−Ek�n�+2h. This energy differ-
ence is independent of the exact many-particle states Q and
Q�, so we may rewrite the sum on these states as a trace,

�
Q�

�
knk�n�

�Q���̂kn↓
† �̂k�n�↑�̂k�n�↑

† �̂kn↓�Q����Ekn − Ek�n� + 2h� .

�A3�

We may now employ the anticommutation relations among
the quasiparticle operators to rewrite the above in terms of
number operators

�
Q�

�
knk�n�

�Q��n̂kn↓�1 − n̂k�n�↑��Q����Ekn − Ek�n� + 2h� .

�A4�

Upon taking the thermal average, the trace becomes a prod-
uct of Fermi functions,

�
knk�n�

f�Ekn↓��1 − f�Ek�n�↑����Ekn − Ek�n� + 2h� . �A5�

We will also show the calculation for the term resulting from
the pair creation and annihilation term because it will differ
slightly from the calculation given above. This term �again
suppressing actors of u and v� is

�
QQ�

�
knk�n�

�
qmq�m�

�Q���̂kn↑�̂k�n�↑�Q��Q��̂qm↑
† �̂q�m�↑

† �Q��

���EQ� − EQ� . �A6�

In this case, there are two ways to “match” the operators; we
may either let �k ,n�= �q ,m� and �k� ,n��= �q� ,m�� or let
�k ,n�= �q� ,m�� and �k� ,n��= �q ,m�. We thus obtain

�
QQ�

�
knk�n�

��Q���̂kn↑�̂k�n�↑�Q��Q��̂kn↑
† �̂k�n�↑

† �Q��

+ �Q���̂kn↑�̂k�n�↑�Q��Q��̂k�n�↑
† �̂kn↑

† �Q�����EQ� − EQ� .

�A7�

The only nonzero matrix elements in this case are those in
which the state Q� is obtained from the state Q by destroying
two quasiparticles with spin up, one with wave vector k and
band index n and one ith wave vector k� and band
index n�. This means that the energy difference
EQ�−EQ=−Ekn↑−Ek�n�↑=−Ekn−Ek�n�+2h. The rest of the
derivation proceeds as before, and we eventually obtain

�
knk�n�

	1 − f�Ekn↑�
�1 − f�Ek�n�↑����Ekn + Ek�n� − 2h� .

�A8�
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